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”Παντα ρει” or ”Panta rei”

”Everything flows”, already known by the Greek philosopher Herakleitos (535-475 BC).



Samenvatting

Granulair materiaal (of granulaten) kun je overal om je heen vinden: een paar voorbeelden
zijn zand, suiker of in het algemeen ”korrelvormige materialen”. Het lijken zulke gewone
materialen, maar ze kennen zeer verschillende verschijningsvormen. Granulaten kunnen
zich namelijk gedragen als een vaste stof, denk maar aan een doodnormaal hoopje zand.
Verder gedragen ze zich als een (bijzondere) vloeistof in een zandloper en in de door mij
uitgevoerde experimenten gedragen de glazen kogeltjes zich als een gas, doordat we hard
schudden.
Het onderzoek naar granulaten is van fundamenteel belang, want vele eigenschappen van
granulaire systemen zijn nog niet geheel verklaard. Daarnaast gebruiken allerlei indus-
trieën granulaten als basis- of eindprodukt. Voor deze zeer uiteenlopende industrieën is
het zeer van belang om deze speciale soort stoffen goed te doorgronden. Bij de farma-
ceutische industrie bijvoorbeeld is het zeer ongewenst als bij de productie van pillen alle
werkzame stof in één pilletje komt te zitten, doordat de verschillende poeders gaan schei-
den (een veelvoorkomend granulair verschijnsel). Geschat wordt dat ongeveer 40% van de
industriële capaciteit en energie wordt verspild door problemen met granulaire materialen!

Mijn afstudeerwerk beslaat twee onderwerpen:

• Het Leidenfrost effect in een granulair gas

• ”Coarsening” (verruwing) in een granulair gas

Het Leidenfrost effect in een granulair gas
Het ”Leidenfrost effect” is het intrigerende fenomeen dat een druppel water op een gloeiend
hete plaat niet direct verdampt, maar juist zeer lang op deze gloeiende plaat kan blijven
liggen. Dit effect kan zelfs langer dan een minuut duren!
De verklaring voor dit verrassende effect ligt in het feit dat wanneer de temperatuur van de
plaat boven de 200 graden Celsius ligt, de druppel direct een laagje waterdamp vormt. Dit
zeer dunne laagje zorgt ervoor dat er alleen een slechte, indirecte warmte-overdracht van
de plaat naar de druppel plaats kan vinden. Zo kan onze druppel als een ware hovercraft
meer dan een minuut over de hete plaat dansen.
De granulaire versie van dit effect kun je waarnemen, wanneer je een plat bakje (diepte net
iets meer dan de diameter van een kogeltje) vult met glazen kogeltjes. Bij voldoende hard
schudden zal er namelijk een cluster van dicht opeengepakte (en daardoor langzame) ko-
geltjes gaan zweven. Onder en boven dit cluster bevinden zich minder dicht opeengepakte
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kogeltjes, die heel snel bewegen. Dit betekent dat een ”koud” cluster, waarin de kogeltjes
relatief langzaam bewegen, boven en onder wordt omgeven door ”hete”, snelle kogeltjes.
Bij het oorspronkelijke Leidenfrost effect hadden we ook een koud cluster, de druppel, die
omgeven was door een hete omgeving. Vandaar dat dit experiment de granularie versie
van het Leidenfrost effect wordt genoemd.
Uit de Granulaire Leidenfrost experimenten heb ik diverse eigenschappen van dit speci-
fieke systeem gehaald: wanneer je de schudsterkte langzaam opvoert is er een moment dat
het cluster gaat zweven. Deze fase-overgang heb ik geanalyseerd, waarbij ik het aantal
lagen kogeltjes en de schudsterkte onafhankelijk van elkaar heb gevarieerd. Hieruit blijkt
de genoemde fase-overgang naar een zwevend cluster steeds voor dezelfde waarde van de
schudsterkte S ≈ (af)2 te gebeuren (a is de amplitude van het schudden en f de frequentie).

”Coarsening” (verruwing) in een granulair gas
Het effect van ”coarsening”, ook wel verruwing, kun je heel goed zien wanneer je een vers
getapt biertje met een goede schuimkraag bekijkt. Het gaat dan vooral eventjes om deze
schuimkraag: wanneer je hier een hele tijd naar blijft kijken, dan kun je de vele kleine
celletjes van het schuim zien samensmelten met wat grotere cellen. Dit proces van grote
cellen die kleintjes opeten heet ”coarsening” en gaat onverminderd door totdat enkel nog
grote cellen overblijven, die uiteindelijk knappen. Voila. . . een doodgeslagen biertje!
In de door mij gebruikte ringvormige opstelling met 12 bakjes is hetzelfde proces te zien
wanneer je in elk bakje evenveel kogeltjes doet. Bij een bepaalde schudsterkte zullen de
kogeltjes van bakje naar bakje springen en door toevallige fluctuaties zullen er soms on-
evenredig veel kogeltjes in één bakje terecht komen, oftewel er vormt zich een cluster van
kogeltjes in dit bakje. Van de 12 bakjes kunnen er dan bijvoorbeeld op een gegeven moment
3 een cluster bevatten en omdat in deze clusters veel botsingen plaatsvinden, is de kans
klein dat een kogeltje weer uit het bakje springt. Kortom, de goed gevulde clusters (veel
kogeltjes in een bakje) verzamelen daardoor steeds meer kogeltjes uit de bakjes met weinig
kogeltjes. Net als bij de schuimkraag eten de grote clusters de kleine op, dus vandaar dat
deze experimenten de granulaire ”coarsening” experimenten heten. En ook hier gaat dit
proces door, zodat eerst 3 clusters onstaan. Ook deze 3 clusters eten elkaar op, al duurt
het wat langer, maar uiteindelijk zal er slechts 1 cluster overblijven. Dit is de enige stabiele
eindsituatie voor dit systeem.
Uit het hierboven beschreven experiment heb ik enkele voorspellingen van de bestaande
theorie proberen te controleren, zoals de tijd die het duurt voordat het winnende cluster is
gevormd enz. De resultaten van deze experimenten komen over het algemeen goed overeen
met de theorie.



Abstract

Leidenfrost effect:

In a vertically vibrated quasi-2D container filled with glass beads (d = 4.0 mm) a density
inverted state is reached through a second order phase transition. Above a critical shaking
strength, and for a sufficient number of layers (F ≥ 10), a cluster of beads is elevated and
supported by a few fast particles underneath the cluster. This cluster exhibits an almost
perfect hexagonal close packing, causing the density to be maximal at the floating cluster
and distinctly lower above and below this cluster. This means that the particles are moving
faster and the granular temperature below and above the cluster is, and remains, higher
than in the cluster itself: the Granular Leidenfrost effect.
The adapted continuum model based on the hydrodynamic equations is found to be in qua-
litative agreement as far as the density profiles for various shaking strength are concerned.
However, these profiles do not exhibit the experimentally observed feature of getting a den-
sity inverted state above a critical shaking strength only. The results from the theoretical
model show density inversion for all shaking strengths for more than F > 3 layers and no
inversion for F ≤ 3. Thus, no second order phase transition is recovered in the current
theoretical model.
The experimental results at the transition to density inversion together with the formulated
continuum theory gives confidence that shaking strength S = ΓA ∝ (af)2 is the important
control parameter, which is constant at this second order phase transition.

Coarsening:

Two types of granular experiments have been performed with a ring setup consisting of
N = 12 compartments:

Uniform Distribution: Starting from a uniform distribution using P = 480 glass beads
in total, the ring setup is shaken at various shaking strengths. Analysis of the experi-
mental pictures showed that no quantitative information can be extracted concerning
the particle fraction nk profile of the compartments between two clusters.
In agreement with the existing theory in the experiments at low shaking strength
more (unstable) transient states are observed (and also for a longer time) than for a
higher shaking strength.

iv



Two Clusters: The other experiments started with two competing clusters (P = 200 and
P = 280 beads) a certain number of compartments d apart in the ring setup. The
interaction between the two clusters can act through two paths: the shorter path d,
but also along the longer path with distance 12− d (d ≤ 6). The time it takes before
one of the clusters breaks down is predicted by the flux model:

tbreakdown = t0d(1− d

12
), (1)

where t0 is the breakdown time for two clusters situated next to each other. The
experimental results show that this prediction for the breakdown time holds for small
inter-cluster distances: d ≤ 3. However, the experiments with two clusters a distance
d > 3 apart are not in agreement with this relation. The corresponding breakdown
times show a saturation, indicating a lack of interaction between the two clusters.
The proposed explanation is that the smaller cluster (P = 200) breaks down via
a phenomenon called ”sudden collapse”, before any significant interaction between
the clusters has taken place. Thus, for d > 3 the two clusters are acting as two
independent clusters. This saturation effect has also been reported in Molecular
Dynamics simulations.
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Chapter 1

Introduction

1.1 What is Granular Matter?

Granular matter is everywhere in everyday life: a few examples are sand, salt, sugar, gravel
or any grain like material in general. These materials seem so simple, but they contain
many not fully understood features. Granular matter can behave like all three states of
matter, for example in a sandpile at rest, the granular material acts like a solid, see the
dune in Fig. 1.1. In an hourglass the sand particles are flowing, therefore the sand is
clearly behaving as a liquid in an hourglass. The third state of matter, gas, is present in
the granular experiments discussed in this thesis: Granular matter can act as a granular gas
when shaken above a certain critical shaking strength. See the review articles by Jaeger,
Nagel and Behringer [1, 2], Goldhirsch [3] and Kadanoff [4].

Figure 1.1: a) An example of a granular solid is this dune (or large sandpile) at rest.
b) Liquid-like behavior of sand can be observed in a hourglass. c) Granular material is
behaving as a gas in an experiment discussed in this thesis, when it is shaken above a
critical shaking strength.
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1.2 Granular Matter acting as a Gas

From a fundamental point of view it is very interesting to investigate granular phe-
nomenon more in detail, because only a few granular effects have been fully explained up
till now. Furthermore, many industries are involved in processing, transporting or storing
granular materials, so it is a major concern to reveal all the secrets of granular materials
to efficiently work with these materials. It is clear for example that the pharmaceutical
industry has to be careful while handling powders to produce pills, because every pill has
to contain the same amount of effective substance. So size segregation, often observed
in granular experiments, is something the pharmaceutical industry wants to prevent. Ac-
cording to an estimate by Knowlton et al. [5], every year over 1000 silos, bins and hoppers
fail in North America just like in Fig. 1.2. Considering all problems arising from handling
granular materials in industries like the ones mentioned above, it is argued that about 40%
of the industrial capacity is wasted due to these problems. Therefore, it is very important
to understand how granular materials act in general [1, 2].

Figure 1.2: Industries handling granular materials often encounter problems of which this
collapsing bin is a disastrous example. . . (from [6])

1.2 Granular Matter acting as a Gas

This master thesis treats two systems in which granular matter, glass beads, acts like a
gas due to shaking the setup above a certain shaking strength. The granular particles are
non-cohesive and the particle collisions are inelastic. This means that in each collision
energy is dissipated. This property of a granular gas is the main reason why it behaves so
distinctively different from ordinary gases.
Another difference is the fact that in a granular gas the ordinary energy scale, kBT , is
effectively zero. This is due to the fact that heat is not able to move grains larger than
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1.2 Granular Matter acting as a Gas

∼1 micron. So in granular systems the potential energy, mgd, is the relevant energy scale.
This means that ordinary thermodynamic arguments do not apply in granular systems and
when a granular system is shaken it can be considered to be far from equilibrium. When
you consider size segregation in a granular experiment as mentioned in section 1.1, for
example, it intuitively contradicts the principle of increasing entropy. However, this ther-
modynamic principle is completely outclassed by the dynamical effects in granular matter.
Because ordinary temperature is not a useful concept in granular systems, the ”granu-
lar temperature” is defined: T ∝ 〈v2〉, i.e. the mean squared velocity of the particles.
Whenever the temperature or T is mentioned in this thesis, the granular temperature is
considered.

This report is divided into two parts:

• Part I: Leidenfrost Effect in a Granular Gas
This part deals with the experimental results and theory of a quasi-2D experiment,
which exhibits a phenomenon called the ”Granular Leidenfrost Effect”.

• Part II: Coarsening in a Granular Gas
The results of the experiments in a ring setup consisting of 12 compartments will be
compared with the existing theory on coarsening in a granular gas.
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Part I

Leidenfrost Effect in a Granular Gas
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Chapter 2

Granular Leidenfrost Effect:
Experiments

2.1 Original Leidenfrost Effect

The ”Leidenfrost effect” was first reported by Hermann Boerhaave in 1732, but not in-
vestigated thoroughly until Johann Gottlob Leidenfrost published ”A Tract About Some
Qualities of Common Water” in 1756, which was not translated from Latin until 1966 [7].
This effect can be observed when a droplet of water impinges on a hot surface, where the
droplet sometimes survives for an astonishingly long time.
Leidenfrost himself performed the experiments with an iron spoon heated red-hot in a
fireplace as sketched in Fig. 2.1. He carefully put a drop of water into the spoon and timed
(with a pendulum) how long the drop survived. On the spot where the drop had been, the
spoon turned dull, but the surroundings were still red-hot. After depositing the first drop,
he noticed the survival time of the next drops decreased rapidly. The explanation for this

Figure 2.1: A sketch of the authentic setup used by Johann Gottlob Leidenfrost around
1756 for the experiments nowadays associated with his name (from [8]).
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2.1 Original Leidenfrost Effect

Figure 2.2: a) The lifetimes of drops of distilled water on a hot plate for various plate
temperatures shows a remarkable high peak at the Leidenfrost point and it can be explained
by b) a sketch of the cross section of a surviving drop of water on a hot plate. The vapor
layer prevents direct heat transfer from the hot surface to the surviving drop (from [9]).

phenomenon is that above a certain temperature, the Leidenfrost point (above the boiling
point of the droplet-liquid), the bottom layer of the droplet produces vapor immediately
after touching the hot surface, see Fig. 2.2 [9]. This vapor-cushion is constantly fuelled
by the droplet and prevents it from touching the hot surface, so no heat transfer can take
place directly from the hot surface to the droplet. Indirectly there is still heat transfer
possible through the vapor-layer, but water vapor is a poor conductor. So just a little heat
can be transferred indirectly, which explains the long survival of the water droplet on a
very hot surface as can be seen in the graph of Fig. 2.2. The Leidenfrost point of water
is TL ≈ 220 ◦C depending on the circumstances and the effect is much more pronounced
when distilled water is used. When the temperature of the hot surface is below the Lei-
denfrost point, but well above the boiling temperature, a droplet of water will spread out
and vaporize in a few moments. As a result of this spreading the drop quickly absorbs so
much energy it instantly vaporizes [10].

A granular version of the Leidenfrost effect was first observed in a Discrete Element
Method simulation by Lan and Rosato [11], and more recently in a Molecular Dynamics
(MD) simulation by Meerson et al. [12]. This report handles the first experimental evidence
of the Granular Leidenfrost effect, in a quasi-2D container. When the container is verti-
cally vibrated above a critical shaking strength, and for a sufficient number of particles, a
crystal-like cluster of particles is elevated and supported by a few fast particles underneath
the cluster. The cluster shows an almost perfect hexagonal close packing, causing the
density to be maximal at the floating cluster. Near the vibrating bottom and above the
cluster the density is distinctively lower. This means that the particles are moving faster,
so the granular temperature below and above the cluster is higher than in the cluster itself.
Thus, this is the granular version of the Leidenfrost effect.
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2.2 Experimental Setup

2.2 Experimental Setup

Figure 2.3: Sketch of the setup used for the Granular Leidenfrost effect experiments.

A sketch of the setup for the Granular Leidenfrost effect is depicted in Fig. 2.3. The
main point of the setup is the perspex, poly(methylmethacrylaat) or PMMA, container
holding the glass beads of diameter d = 4.0mm and density ρ = 2.5g/cm3. The glass
beads are sufficiently large to safely neglect the role of the interstitial air.
The depth of the quasi-2D container is a little larger than the diameter of the glass beads
(dcontainer = 4.5mm) such that the beads can move in a vertical plane without jamming
the container.
All experiments have been recorded with a high-speed camera (see appendix A for the
specifications of all the equipment used). The camera recorded at 1000 frames per second,
so a very intense light source was used to get bright pictures in the short exposure time
(< 1ms). A diffusive plate was used to diffuse the light for better quality pictures. Before
recording each experiment the setup had to be in a steady state, after which the camera
was triggered and typically the first 300 consecutive pictures were saved to a computer.
The snapshot of Fig. 2.4 was made of a typical experiment using a Digital Video camera
at a rate of 25 frames per second.
The shaker is controlled by the wavegenerator with amplifier and the actual amplitude

and frequency of the shaker is checked by the accelerometer. The accelerometer signal
is then fed back to the wavegenerator/-controller in order to maintain the frequency and
amplitude. The amplitude range was typically a = 0.1−5.0mm and the shaking frequency
was varied from f = 10− 200Hz.
The exact container width is Lx = 10.04cm, which means that 25 glass beads fit neatly in
a row on the bottom of the container without jamming it. In order to get to the lowest
energetic packing, the next row of beads naturally shifts half a bead. In this way every two
layers contain 49 beads of d = 4.0mm. The number of layers in the container varied from
F = 1 to F = 20 layers. A picture of the setup with the shaker and container is shown in
Fig. 2.5.

7



2.2 Experimental Setup

Figure 2.4: Typical experimental snapshot made with a Digital Video camera (at 25 frames
per second) for F = 16 layers of glass beads shaken with an amplitude of a = 4.0mm and
at a frequency of f = 90Hz.

Figure 2.5: The quasi-2D container with glass beads, mounted on the shaker.

As mentioned already in section 1.2 the glass beads are acting as a granular gas when
shaken vigorously. These particles exhibit a special feature compared to ordinary gases:
the collisions are inelastic, i.e. the normal restitution coefficient is e < 1. This means that
only the momentum is conserved in each collision, but that some of the energy is dissipated
(momentum and energy are both preserved for elastic collisions, e = 1).
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2.3 Experimental Observations

2.3 Experimental Observations

The parameters that have been changed independently during the experiments were the
number of layers F , the amplitude a and the frequency f . By changing the amplitude and
the frequency, the dimensionless shaking strength Γ is changed,

Γ =
a(2πf)2

g
. (2.1)

Above a certain critical shaking strength Γc, the Granular Leidenfrost effect can be ob-
served provided that the system contains sufficiently enough glass beads. Three typical
experimental pictures recorded with the high-speed camera using 16 layers of beads for
increasing shaking strength can be seen in Fig. 2.6. The fact that the Granular Leiden-
frost effect, or vertical clustering, occurs towards stronger shaking is remarkable, since
in all other granular cluster experiments the clustered state is reached when the shaking
strength is decreased [13]!
The Granular Leidenfrost effect can be observed only for a sufficient number of layers,

see Fig. 2.7.The minimum number of layers for which the Granular Leidenfrost effect can
be observed in the performed experiments is around F = 10. The existence of a minimum
means that the effect can be triggered by adding particles to the system.

One problem we had to deal with in the experiment was the fact that static electric-
ity was building up during shaking. Static electricity develops when two different non-
conducting materials come into contact with each other and by adhesion a chemical bond
is formed. In contact, one material can capture some electrons from the other and when the
materials are then separated, one material is negatively charged and the other positively.

Figure 2.6: Three typical experimental pictures made with a high-speed camera at 1000 fps
for F = 16 layers of glass beads with different shaking strengths are shown here: a) The top
of the pile is just about to fluidize at Γ = 7.7 (f = 80Hz and a = 0.3mm). b) At a shaking
strength of Γ = 25.8, just above Γc, the system is clearly above the fluidization point
(f = 80Hz and a = 1.0mm). Larger shaking strengths will develop a more pronounced
inversion than the one displayed here. c) For vigorous shaking at Γ = 51.5 a clear density
inverted state is present (f = 80Hz and a = 2.0mm).
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2.3 Experimental Observations

Figure 2.7: The changing behavior of the glass beads in the vigorously shaking quasi-2D
container can be observed in experiments with different number of layers: a) No Granular
Leidenfrost effect is present for F = 6 layers shaken at Γ = 51.5 (f = 80Hz and a =
2.0mm). b) At a shaking strength Γ = 81.5 for F = 10 layers the effect just exists
(f = 90Hz and a = 2.5mm). c) A density inverted state is clearly observed using F = 16
layers shaken at Γ = 51.5 (f = 80Hz and a = 2.0mm) d) and it is even more pronounced
for F = 20 layers with Γ = 65.2 (f = 90Hz and a = 2.0mm).

This static electricity depends on the combination of materials and to be exact, it depends
on the relative position in the triboelectric series [14]. For example, the glass beads will
get positively charged when rubbed against the shaking perspex container. Accordingly,
this charge imbalance will attract the glass beads to the perspex walls of the container,
which will affect the results of the experiments to some unknown extent.
In order to prevent static electricity in the Granular Leidenfrost effect experiments, the
humidity was kept constant and as high as possible using an air-conditioner. A high humid-
ity supplies a small coat of moisture on the surface of the material, in this way providing
an easy path for the electrons to neutralize the charge imbalance. Before recording an
experiment the static electricity was checked and when it was observed, the container was
opened to ”breathe” or sometimes even emptied out to stop the static electricity building
up.
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2.4 Data Processing

2.4 Data Processing

The sequences of experimental high-speed pictures, of which some typical examples were
shown in section 2.3, are then automatically and identically analyzed with digital image
processing. All pictures have the same size of 512x384 pixels and the view of the high-speed
camera covered exactly the inner width of the container without recording the sidewalls.
So, without a problem the pictures could be analyzed immediately after recording by just
counting the number of black pixels, i.e. the pixels belonging to the beads, in each row.
When this number of bead pixels is divided by the total number of pixels in a row, 512,
the solid fraction ρ is obtained for this particular row. The solid fraction is determined
for all 384 rows in each picture, whereafter all values for every row are averaged over all
recorded pictures. See the solid fraction plot for the example experiment of F = 16 layers
shaken at f = 80Hz and amplitude a = 2.0mm (Γ = 51.5) in Fig. 2.8. From the solid
fraction plot it should be noted that the origin of the height (h = 0) is chosen to be at the
maximal positive displacement of the vibrating bottom in all experiments. In theoretical
models for simplicity the bottom is commonly considered to be stationary as proposed by
Eggers [15]. So this choice for the origin facilitates the comparison between experiments
and theory. Another advantage of this choice is that for the shaking parameters a and f
the same reference frame is used.

The height h is made dimensionless by dividing it by the bead diameter d, which is
measured in pixels in each experiment. The bead diameter is known (d = 4.0mm), so in
this way the resolution of every experiment is determined and the dimensionless height
h/d can be constructed.
The result of Fig. 2.8 is strikingly different from the standard barometric height distribution
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Figure 2.8: The unprocessed solid fraction ρ (averaged over 300 experimental pictures)
measured as a function of the dimensionless height h/d for F = 16 layers. Shaking param-
eters: a = 2.0mm and f = 80Hz, corresponding to Γ = 51.5.
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2.4 Data Processing

known for ideal gases. In an ideal granular gas, the particles obey the equation of state:

p = nkBT, (2.2)

i.e. the ideal gas law, where p is the pressure, n the number density, kB = 1.38 · 10−23J/K
Boltzmann’s constant and T the granular temperature. The granular particles also have
to comply with the momentum balance,

dp

dz
= −mgn, (2.3)

in which −mg depicts the gravitational force with gravitational acceleration g on a single
particle mass m. If the granular temperature T is assumed to be independent of the height
z, these equations combine to kBTdn/dz = −mgn, what leads to the barometric height
formula:

n(z) = n(0)e−mgz/kBT . (2.4)

Instead of this exponentially decaying number density the Granular Leidenfrost experi-
ments show a clear density inversion.

Simultaneously with the determination of the solid fraction, the motion of the bottom is
tracked also in the recorded sequences and together with the known resolution, the ampli-
tude and frequency can be reconstructed. The frequency entered on the wavegenerator/-
controller always agrees perfectly with the actual frequency. The actual amplitude is
systematically just a little higher (maximal 5%) than entered, so it is permitted to neglect
this deviation.

The averaged solid fraction plot of Fig. 2.8 needs to be smoothed in order to determine
the inversion height hinv, because a higher order polynomial fit did not work properly for
all experiments. In the experiments with a small or no inversion, the inversion height was
not determined correctly. So, the solid fraction needed to be smoothed using a running
average in which a certain number of data points before and after the initial data point is
averaged and assigned to that point. Problems with this averaging method occurred for
the first and last couple of points, because of the lack of data points before or after the
point of interest. This was solved by simply extrapolating these first and last couple of
points.
From this smoothed solid fraction plot the derivative could easily be taken with the per-
spective of determining the inversion height as the height for which the derivative is zero
for the first time. Besides this inversion height hinv, the height for maximal solid fraction
hmax and the height with last zero-derivative htop have been determined for all experiments.
The resulting plots for the example experiment of F = 16 are depicted in Fig. 2.9. The
values for hinv and htop can be regarded as the lower and upper boundary of the crystal-like
structure in the original experimental picture. From Fig. 2.10 it may be observed that the
relation hmax = hinv+htop

2
holds on the average.
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2.4 Data Processing

Figure 2.9: a) The original solid fraction (black solid) is processed by the running average
method producing the smoothed solid fraction plot (red dotted). b) The derivative of
this smoothed curve (red solid) defines the inversion height hinv = 8.2 (blue solid) by
the determination the first height with zero derivative. In the same way htop = 11.2
(blue dash-dotted) is determined, being the last zero derivative and the maximal achieved
solid fraction hmax = 8.6 (blue dotted). Shaking parameters: F = 16, a = 2.0mm and
f = 80Hz, corresponding to a shaking strength Γ = 51.5.

Figure 2.10: F = 10 layers shaken with different amplitudes a for a fixed frequency f =
90Hz. a) As a function of shaking strength, the inversion height hinv and b) the upper
boundary of the piston htop are shown. c) Evidence of the relation hmax = hinv+htop

2
, i.e.

that hmax (red squares) and (hinv + htop)/2 (blue plus signs) are the same on the average.
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Chapter 3

Granular Leidenfrost Effect: Theory

3.1 Basic Equations

To describe the Granular Leidenfrost effect in a 2D situation the hydrodynamic steady
state equations, for instance used by Grossman et al. [16], Eggers [15] and Meerson et
al. [12], can be used for a continuum description;

p = nT
nc + n

nc − n
, nc =

2√
3d2

(3.1)

dp

dz
= −mgn (3.2)

d

dz
{κT 1/2dT

dz
} = λn2T 3/2 (3.3)

Equation (3.1) is the equation of state for kB = 1 with the finite volume effect incorpo-
rated. Here p(z) is the pressure, n(z) the number density and T the granular temperature:
T ∝ m〈v2〉 (m is the mass of a single particle). The height z is measured from the bottom
of the container and nc is the maximal number density in two dimensions for particles of
diameter d in a hexagonal close packing. The second equation (3.2), is the force balance
with the force on a single particle being −mg. The third equation shows the energy bal-
ance of the heat flux through the system and the dissipation due to particle collisions.
The thermal conductivity is proportional to the average particle velocity 〈v〉, hence the
term κT 1/2 on the left hand side of (3.3). The dissipation term (right hand side) emerges
from the energy loss in one collision (1− e2)T and the total number of collisions, which is
proportional to n2v ∝ n2T 1/2, yielding the total energy dissipated by all inelastic collisions
∝ n2T 3/2. The coefficients κ and λ for 2D circular disks of diameter d have been found by
Jenkins and Richman [17]: the thermal conductivity coefficient is equal to κ = 2m√

πd
and

the dissipation coefficient is determined to be λ = 2
√

πmd(1− e2).

To solve this set of three equations, three boundary conditions are required of which a
constant granular temperature at the bottom is the first one:

T (z = 0) = T0 = mvbottom = m(af)2 = constant. (3.4)
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3.2 Dimension Analysis

In this way a constant energy supply is provided at the bottom, which is shaking at an
amplitude a and frequency f . The second boundary condition is a zero heat flux at the
top, thus a constant granular temperature at z →∞:

dT

dz

∣∣∣∣
z→∞

= 0. (3.5)

The third boundary condition is the conservation of the total number of particles N ,

∫ ∞

0

n(z) dz = N/Lx = Fdnc = constant. (3.6)

3.2 Dimension Analysis

To analyze the set of equations (3.1-3.3), they can be made dimensionless by means of:

z 7→ z̃ =
z

d
, (3.7)

n 7→ ñ =
n

nc

, (3.8)

T 7→ T̃ =
T

T0

. (3.9)

Applying these three dimensionless parameters to the set of hydrodynamic equations yields:

p = (ncT0)ñT̃
1 + ñ

1− ñ
, (3.10)

dp

dz̃
= −(mgdnc)ñ, (3.11)

d

dz̃
{κT̃ 1/2dT̃

dz̃
} = (dnc)

2λñ2T̃ 3/2. (3.12)

By inserting (3.10) into (3.11), the pressure p can be eliminated, leaving a set of two
equations:

d

dz̃
{ñT̃

1 + ñ

1− ñ
} = −{mgd

T0

}ñ, (3.13)

d

dz̃
{T̃ 1/2dT̃

dz̃
} = π(d2nc)

2(1− e2)ñ2T̃ 3/2. (3.14)

In (3.14) is made use of the relation between the dissipation coefficient λ, and the coefficient
κ for the thermal conductivity: λ/κ = πd2(1− e2).
In order to describe the Granular Leidenfrost experiments with this continuum model, the
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3.3 Solving the Theoretical Model

next four dimensionless control parameters can be defined:

Γ =
a(2πf)2

g
(3.15)

F =
h

d
(3.16)

A =
a

d
(3.17)

ε = (1− e2) (3.18)

Where Γ is the dimensionless shaking strength, F the filling height, A the dimensionless
shaking amplitude and ε the inelasticity of the granular particles. Using these four con-
trol parameters, the hydrodynamic equations (3.13, 3.14) will be solved in the next section.

3.3 Solving the Theoretical Model

To numerically solve the set of equations (3.13, 3.14), they can be rewritten using the
dimensionless control parameters:

d

dz̃
{ñT̃

1 + ñ

1− ñ
} = − 1

S
ñ, S = ΓA, (3.19)

dT̃ 3/2

dz̃2
= 2πεñ2T̃ 3/2. (3.20)

In equation (3.19) the term (mgd/T0) is rewritten in terms of S = ΓA using the definition
of T0 (3.4). Based on the three boundary conditions discussed in section 3.1, the next
dimensionless boundary conditions can be defined:

T̃0 = 1, (3.21)

dT̃

dz̃

∣∣∣∣
z̃→∞

= 0, (3.22)

∫ ∞

0

ñ(z̃) dz̃ = F. (3.23)

Note that in the set of dimensionless hydrodynamic equations with the corresponding di-
mensionless boundary conditions (3.19)-(3.23), all the dimensionless control parameters
defined in section 3.2 emerge. So, these four parameters (Γ, F , A and ε) are indeed the
control parameters for this system described by the hydrodynamic equations.

In order to solve this set of dimensionless equations, the next three (also dimensionless)
parameters are defined:

U = T̃ 3/2, (3.24)

V =
d

dz̃
(T̃ 3/2) =

dU

dz̃
, (3.25)

W = ñ. (3.26)
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3.3 Solving the Theoretical Model

These parameters can be used to form the next three first-order equations based on (3.19,
3.20):

dU

dz̃
= V, (3.27)

dV

dz̃
= 2πεW 2U, (3.28)

d

dz̃
{WU2/3 1 + W

1−W
} = − 1

S
W. (3.29)

Here, equation (3.27) directly comes from the definition for the dimensionless parameter
V (3.25). To proceed equation (3.29) can be differentiated with respect to z̃, leading to
the final set of input equations to solve the model numerically with this continuum model:

dU

dz̃
= V, (3.30)

dV

dz̃
= 2πεW 2U, (3.31)

dW

dz̃
= W

− 1
S
(1−W )2 − 2

3
(1−W 2)U−1/3V

U2/3(−W 2 + 2W + 1)
. (3.32)

The three dimensionless boundary conditions mentioned above, can be rewritten using the
parameters U , V and W to solve the model with an ODE-solver (Ordinary Differential
Equation):

U(0) = T̃ 3/2(0) = 1, (3.33)

V (z̃ →∞) = 0, (3.34)

W (0) = −1 + F
S

2
+

√
(1 + F

S
)2 + 4F

S

2
. (3.35)

The first boundary condition is straightforward, the dimensionless temperature has to be
constant at the bottom. Furthermore, a zero heat flux at the top is the second boundary
condition and the last condition is derived from the conservation of the total number of
particles, see (3.6), which reads:

∫ ∞

0

Wdz̃ = F. (3.36)

The boundary condition for W (0), equation (3.35), is found if this conservation integral is
used when integrating equation (3.29).

The second boundary condition (3.34) is not fulfilled at once, because it depends on
the initial value of V (0):

V (0) =
3

2

dT̃

dz̃

∣∣∣∣
z̃=0

= −t ≤ 0. (3.37)
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3.3 Solving the Theoretical Model

Figure 3.1: The dimensionless number density W = ñ = n/nc as a function of the height z
for F = 16 layers. a) At a low shaking strength (S = 0.11) the continuum model shows a
typical number density plot of a system almost at rest. b) If the system is shaken stronger
(S = 6.67) a density inversion is starting to build up and c) for vigorous shaking (S = 100)
the Granular Leidenfrost effect can be clearly observed in the theoretical density profile.

Unfortunately no a priori knowledge is available about the behavior of V at the bottom.
Logically the slope of the granular temperature curve will be smaller than (or equal to)
zero, because dissipation will decrease the granular temperature above the bottom. The
shooting method is used to provide that V (z̃ → ∞) is sufficiently close to zero. This
method means that the shooting parameter t is varied up and down, depending on the
outcome of the condition for V (3.34), until this condition is met [18]. Then all boundary
conditions are fulfilled and the ODE-solver can calculate the final profiles for U , V and W .
A typical development of the resulting dimensionless number density W for F = 16 layers
is shown in Fig. 3.1. From Fig. 3.1 it can be concluded that the continuum model success-
fully describes the Granular Leidenfrost effect qualitatively. However, the experimentally
observed phenomenon of a constant density plateau for a sufficient number of layers is not
found in the theoretical results for the number density.
Fig. 3.2 shows the plots for U = T̃ 3/2 and V = d

dz̃
(T̃ 3/2) = dU

dz̃
corresponding to Fig. 3.1c).

It may be noted that when the condition V (z̃ → ∞) = 0 was fulfilled, this condition was
always at the border of getting imaginary.

Figure 3.2: a) U = T̃ 3/2 versus z for F = 16 at vigorous shaking of S = 100, corresponding
to Fig. 3.1c). b) V = dU

dz̃
as a function of height for the same case.
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Chapter 4

Granular Leidenfrost Effect:
Experiment vs. Theory

4.1 Second Order Phase Transition

First order phase transitions are associated with the coexistence of two distinct phases, like
in boiling water, where both the liquid and the gas phase are present. In a second order
phase transition, the transitions are continuous without the coexistence of two phases at
any point. Consider for example, the ferromagnetic second order phase transition of iron:
the magnetization increases continuously from zero as the temperature is lowered below
the Curie temperature TC .
In the granular Leidenfrost experiments a second order phase transition can be observed,
when the inversion height is considered. In Fig. 4.1 the determination of the inversion
height hinv is shown again.

Figure 4.1: a) The smoothed solid fraction plot with the determined inversion height hinv

of b) the original experimental picture of the experiment performed with F = 16 layers at
a shaking strength of Γ = 51.5 (f = 80Hz and a = 2.0mm).
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4.1 Second Order Phase Transition

Figure 4.2: The inversion height hinv for F = 10 layers as a function of the shaking strength
Γ (frequency fixed at f = 50HZ). It shows a continuous second order phase transition
at the critical shaking strength Γc = 15. The squared inversion height h2

inv plot (inset)
demonstrates a straight line above the transition, so: hinv ∝ (Γ− Γc)

1/2.

In a sequence of experiments with F = 10 layers of glass beads at a fixed frequency
f = 50Hz the phase transition plot of Fig. 4.2 was constructed. Fig. 4.2 clearly fulfills
the conditions of a second order phase transition to develop without discontinuities and
without the existence of two distinct phases at the same time. The transition starts at the
critical shaking strength Γc, which is determined by taking the Γ corresponding to the first
nonzero inversion height. The inset shows a linear relation between the squared inversion
height and the shaking strength. So beyond the critical shaking strength, the inversion
height grows as hinv ∝ (Γ− Γc)

β, with the mean field exponent β = 1/2.
Experimental proof has been provided that no hysteresis is present in the Granular Lei-
denfrost experiments: Normally the steady state is reached from a starting point without
shaking, but the experiments to check the hysteretic effect started at a shaking strength
of Γ = 90 and then lowered to the desired Γ. The results of these experiments completely
match the other experiments, so no hysteretic effect is present here.
For five experiments with F = 10 layers the second order phase transition plot of hinv has
been determined. From these plots an estimate for the errorbar of hinv was determined,
being typically 5 to 10%.

The continuum model results for the number density show inversion for all shaking
strength if the number of layers is F > 3, so even in Fig. 3.1a) an inversion is found if the
inversion height is determined in the same way as in the experiments (the height with first
zero derivative). Therefore, the inversion height in the continuum model has alternatively
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4.1 Second Order Phase Transition
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Figure 4.3: Inversion height hinv as a function of shaking strength S determined by the
continuum model for F = 16 layers.

been determined using a threshold for the n-value at z̃ = 0. This threshold value is adopted
from the minimal number density (nmin = 0.68) for an ideal hexagonal close packing. If
the density profile has a larger value than n(0) = 0.68 it is considered to exhibit no in-
version. For n(0)-values below this threshold, the inversion height is again the height for
which the derivative is zero for the first time. Other choices of this threshold value will just
change the critical shaking strength after which inversion can be observed in the theoretical
model. Fig. 4.3 shows the corresponding inversion height plot for F = 16 layers obtained
by solving the set of equations using the shooting method as described in section 3.3. This
plot resembles the one of Fig. 4.2, but this time the transition is discontinuous.

In short it can be concluded that the continuum model does describe the Granular
Leidenfrost effect qualitatively with respect to the the density profiles, but no second order
phase transition is found for the theoretical model. The reason for this different behavior
compared to the experimental observations has to be searched for in the definition for κ
and λ in section 3.1. Grossman et al. [16] and Meerson et al. [12] used for the coefficients
of thermal conductivity and dissipation the following relations:

κ ∝ n(αl + d2)T 1/2

l
, l =

1√
8nd

nc − n

nc − an
, (4.1)

λ ∝ (1− e2)

l
. (4.2)

Here l is the mean free path and the constant a is determined to be a = 1 −
√

3/8 for a
two-dimensional packing. The resulting density profiles show a density inverted state plus
the extra feature of a plateau of constant number density [12]. The current continuum
model should be adapted using these new relations (4.1, 4.2) in order to investigate the
experimentally observed second order phase transition for the inversion height hinv.
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4.2 Exploring the Parameter-space

Another important aspect which is not included in the model at the moment, is the
effect of the walls of the quasi-2D container. The glass beads are continually colliding with
the side-, front- and back walls, dissipating energy, which is not described by the current
continuum model.

4.2 Exploring the Parameter-space

To explore the parameter-space of a, f and F for different number of layers (F = 1, 3, 5,-
6, 10, 16, 20) inversion height plots were constructed. In order to get a density inversion, a
sufficiently large number of glass beads is required and from the experiments it has been
concluded that the critical number of layers is situated around F = 10 layers, see sec-
tion 2.3. So, for F ≥ 10 a second order phase transition plot like the one in Fig. 4.2, could
be constructed. From each transition plot the critical shaking strength Γc was determined
and the corresponding critical amplitude a and frequency f are displayed in Fig. 4.4. The
results shown in Fig. 4.4 give confidence in S = ΓA ∝ (af)2 as the important control
parameter instead of Γ ∝ af 2, because this graph shows that 1

af
= constant. Thus, at the

transition S is constant for all experiments with F ≥ 10.
The expectation that a higher shaking strength is needed to get to a density inverted state
if F is larger was not recovered in Fig. 4.4. It has to be taken into account that the largest
number of layers of F = 20 is not enormously larger than F = 10, where the density
inversion can be observed for the first time. Thus, in order to observe a shift to higher
shaking strengths the number of layers may have to be increased more.

0 0.5 1 1.5 2 2.5 3
0

50

100

150

a [mm]

f [Hz] 10
16
20

Inversion 

Layers: 

Figure 4.4: For F ≥ 10 density inversion can be observed above a critical shaking strength
Γc via a second order phase transition. The corresponding critical amplitude and frequency
are plotted for different number of layers. The fit was constructed with the criterion that
1
af

= constant and above the fit density inversion can be observed in the experiments.
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Figure 4.5: The number density results from the continuum model exhibit density inversion
for all shaking strengths S if F > 3. The corresponding parameter space is depicted here.

The results from the current theoretical model show density inversion for all shaking
strengths (F > 3) and no inversion for F ≤ 3. The corresponding parameter space for F
and S is shown in Fig. 4.5. Just like in the experiments no inversion at all can be observed
if not enough particles are supplied, but there is a difference in the minimal number of lay-
ers between the experiment and the model. This may be explained by the simplifications
used in the continuum model. When the suggestions of section 4.1 are incorporated, the
parameter space of Fig. 4.5 may resemble the experimental one more closely.

Fig. 4.6 shows the parameter space if the threshold for the inversion height discussed
in section 4.1 is included. Again, inversion can only be observed in the theoretical model
for F > 3 and in addition to this, if the number of layers is increased a higher shaking
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Figure 4.6: If the threshold for the inversion height described in section 4.1 is used, this
corresponding parameter space can be constructed. Note that for more layers a higher
shaking strength is needed to get inversion.
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4.3 Taking the Granular Temperature

strength is required to observe inversion. This effect was not observed in the experiments,
even though it was expected, as discussed earlier in this section. As a suggestion for future
work, the validity of the parameter space of Fig. 4.6 based on the continuum model also
has to be checked using the adjustments mentioned in section 4.1.

4.3 Taking the Granular Temperature

The granular temperature defined as T ∝ 〈v2〉, can be extracted from the experiments by
Particle Tracking Velocimetry (PTV). This method tracks all the particles in every frame
and from this information attempts to find out what paths they most likely have followed
during all consecutive frames [19]. After processing an experiment with the PTV-method
the successive positions are known for almost all particles. From these particle positions
the particle velocity −→v can be determined in every frame, see for an experimental snapshot
with corresponding velocity vectors Fig. 4.7. For all frames the velocity values are known
and then the absolute velocities can be assigned to the heights of the corresponding glass
beads. How the granular temperature typically varies with the height h is demonstrated
in Fig. 4.8.
The granular temperature U2/3 = T̃ shown in Fig. 4.9 is determined for F = 16 layers

shaken vigorously (S = 100). This typical temperature profile highly resembles the exper-
imental profile of Fig. 4.8, although the scale along the horizontal axis is quite different.
So as far as the temperature is concerned the hydrodynamic continuum model seems to be
in qualitative agreement with the experiments performed.

Figure 4.7: An experimental snapshot of an experiment with F = 16 layers of glass beads
with the corresponding velocity vectors.
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4.3 Taking the Granular Temperature
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Figure 4.8: The granular temperature T ∝ 〈v2〉 as a function of the height h for an
experiment with F = 16 layers at f = 90Hz and a = 2.0mm (see also Fig. 4.7). The
temperature is monotonously decreasing from the vibrating bottom to the cluster. At the
top of the cluster, the temperature shows a slight tendency to increase again.
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Figure 4.9: The granular temperature T̃ = T/T0 = U2/3 as a function of the height z̃ based
on the continuum model: F = 16 layers at a vigorous shaking strength S = 100.
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Part II

Coarsening in a Granular Gas

27



Chapter 5

Coarsening: Introduction

5.1 Coarsening, a ubiquitous phenomenon

Coarsening is the phenomenon observed in the foam of beer for example, where the small
foam cells merge into larger ones until the foam only consists of large foam cells. The
effect of the large foam cells consuming the smaller ones is called ”coarsening” [20], see for
example Fig. 5.1.

In granular matter coarsening exists also, for example when a granular material on a
circular disk is vertically shaken. Large and small heaps are formed, in which the large
heaps eat up the smaller ones, causing the large heaps to grow at the expense of the small
heaps, see Fig. 5.2 [21].

Another granular coarsening experiment with a ring setup consisting of 12 compart-
ments discussed in the second part of this report. It is an extended version of a box divided

Figure 5.1: a) A freshly poured beer consists of many small foam cells, immediately starting
to coarsen into larger ones. b) Close-up of a coarsening foam based on water.
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5.2 Coarsening Dynamics: Flux Model Predictions

Figure 5.2: Granular coarsening can be observed when a disk with granular material is
shaken vertically: large heaps consume the smaller ones (from [21]).

into two compartments, with the same number of beads put in each compartment initially.
A granular gas is formed by vigorously shaking the box in the vertical direction and if the
shaking strength is decreased below a certain critical value, the beads cluster in one com-
partment [21, 15, 13]. The explanation for this behavior is that a well-filled compartment
gets fuller, because of the higher number of inelastic collisions dissipating more energy
compared to the dilute compartment. When the shaking strength is kept constant, this
situation of one compartment filled with almost all beads and the other one left almost
empty, is the steady state. There are still beads jumping from the full ”cold” compartment
to the dilute ”hot” compartment and vice versa, but the flux in both directions is the same.
In a situation with more than two compartments the same clustering effect can be observed.
Only now, the final state with a single cluster is reached via transient states consisting of
more than one cluster. In such a transient state the larger clusters will grow at the expense
of the smaller ones, which is a coarsening process leading eventually to the stable state of
one surviving cluster.

5.2 Coarsening Dynamics: Flux Model Predictions

The clustering effect for two compartments has been described in section 5.1. In order to
model the coarsening phenomenon in the ring setup with 12 compartments, the flux in and
out of each compartment is considered in this section.
From the two compartment experiment it can be derived that the flux function (the particle
flux out of a compartment as a function of the number of particles in it) has to have a
maximum for a certain number of particles. Only in this way the same flux for small and
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Figure 5.3: The shape of the flux function F (nk) of equation (5.1) for the inelastic case:
e < 1.

large particle numbers can be explained. Eggers [15] proposed an average flux function for
the number of particles leaving compartment k, which was rewritten for any number of N
compartments by Van der Weele et al. [13]:

F (nk) = An2
k exp−N2Bn2

k . (5.1)

This flux function indeed reaches a maximum at nk = 1/(N
√

B), where nk is the fraction
of particles in the k-th compartment, Σnk = 1. The absolute rate of the flux is determined
by A. A depends on the shaking strength, on the particle properties like the radius r
and the restitution coefficient e and it also depends on the surface of the slit between the
compartments. This prefactor A is accounted for in the time scale. Factor B plays a more
important role and will be described below. The flux function of (5.1) describes the flux
to its nearest neighbors, compartments k− 1 and k + 1, and is shown for the inelastic case
(e < 1) in Fig. 5.3. For a very dilute and a well-filled compartment the same flux value
can be found. This is in fact very logical: A dilute compartment does not contain many
particles, so the flux is low, and for a full compartment the chance to get enough kinetic
energy to jump to the other side is very small as explained in section 5.1.
The dimensionless factor B of (5.1) solely determines the phase transition towards the
clustered state and it takes the form [15]:

2D : B ∝ gh

(af)2
(1− e2)2(

Pr

lN
)2, (5.2)

3D : B ∝ gh

(af)2
(1− e2)2(

Pr2

ΩN
)2. (5.3)

Where h is the height of the wall (lower boundary of the slit), a the amplitude of the
shaking, f the shaking frequency, P the total number of particles, l the width of each box
(in 2D) and Ω the surface area of a compartment (in 3D). A clustered state can be reached
by tuning this factor B and because everything is fixed except the amplitude a and the
frequency f , it can be regarded as an inverse shaking strength. If the shaking strength is
increased by means of a and f , the factor B decreases and vice versa.
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5.2 Coarsening Dynamics: Flux Model Predictions

The different behavior of an ordinary gas with respect to a granular gas can be inferred
also from Fig. 5.3 in combination with equation (5.3). When an ordinary gas is considered,
the collisions are perfectly elastic (e = 1) and hence B = 0, leading to a monotonously
increasing F (nk). Thus, no clustering is possible in an ordinary gas.

Given the flux function, the time rate of change for the fraction nk in the k-th com-
partment is governed by the following balance equation:

dnk

dt
= F (nk−1)− 2F (nk) + F (nk+1) + ξk, (5.4)

with k = 1, 2, . . . , N and periodic boundary conditions. The noise term ξk (with
∑

k ξk = 0)
coming from the statistical fluctuations in the flux, will be neglected. So the time rate of
change of nk is equal to the flux of particles coming in from its neighbors minus the flux
going out to these nearest neighbors.

From the flux, one can find the so-called bifurcation diagrams [22]. As an example, the
hysteretic bifurcation diagram of N = 5 compartments is shown in Fig. 5.4. The uniform
distribution, nk = 0.2, is stable for small B (or high shaking strength). This distribution
gets unstable at the bifurcation point Bbif = 1 and clusters arise. Depending on the B-
value a number of ”transient states” appear, which are depicted as dashed lines in Fig. 5.4.
These states are actually equilibria, but unstable ones, because only the state with one
cluster is stable for B > 1. In such a transient state the clusters fight one another until
the stable one-cluster state is reached, but this may take a considerable time depending on
the B-value. For a high B-value, i.e. low shaking strength, a number of transient states
has to be gone through and each of them takes quite some time.
The hysteretic effect can be seen clearly in Fig. 5.4. When the one-cluster state is con-

Figure 5.4: Hysteretic bifurcation diagram for N = 5 compartments. The stable equilibria
are depicted as solid lines (red) and the unstable ones are the dashed lines (black).
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5.2 Coarsening Dynamics: Flux Model Predictions

sidered and the B-value is decreased, the single cluster is still in a stable equilibrium well
below the bifurcation point Bbif = 1. If the increasing shaking strength approaches the
critical level B = 0.34 the particles start to go to the nearest neighbors. For B slightly
smaller than 0.34 (when the shaking strength is just above the critical value) a remark-
able phenomenon called ”sudden collapse” is observed: after a certain (often considerably
long) time in which the cluster seems to be stable, the cluster evaporates in a few seconds
spreading over all compartments. What happens is that the seemingly stable cluster is
continuously leaking a small number of particles to its neighbors, thus decreasing its frac-
tion of particles nk, and its flux F (nk) correspondingly increases, see Fig. 5.3. This process
carries on until the particle flux approaches its maximum value, speeding up the process
enormously [22, 23]. At this moment the cluster collapses very abruptly.

For the ring setup with 12 compartments the same type of bifurcation diagram can
be produced using the flux model, see Fig. 5.5. This figure shows that the hysteresis is
even more pronounced than in the 5-compartment case of Fig. 5.4, and that the number
of transient states is much larger.

The first regime of coarsening describes the growth of the clusters starting from a
(nearly) uniform distribution, see Fig. 5.6a). A prediction for the particle fraction nk of
the inter-cluster compartments can be found if the continuum limit for x of equation (5.4)
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Figure 5.5: Hysteretic bifurcation diagram for the ring setup with N = 12 compartments.
The stable equilibria are depicted as thick, red lines and the unstable ones are the thin,
blue lines.
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5.2 Coarsening Dynamics: Flux Model Predictions

Figure 5.6: a) Sketch of the profile of the first coarsening regime, cluster growth from a
uniform distribution. The prediction for nk of the compartments between two clusters is
that nk ∝ 1/t. b) This profile of the second coarsening regime shows the cluster-to-cluster
dynamics. (The three clusters depicted here are much higher in reality.)

is taken, see also Van Bilsen [24]:

dnk

dt
≈ 4x2∂2F

∂x2
≈ Ã

∂2nk

∂x2
. (5.5)

In equation (5.5) is made use of the fact that F (nk) ≈ An2
k applies for small nk, and that

Ã = 4x2A. The intermediate hills are observed to maintain their basic shape during their
decay, so a self-similar solution can be proposed:

n(x, t) =
x2

0

Ãt
G(ζ), ζ =

x

x0

. (5.6)

The partial differential equation (5.5) can be solved using the Ansatz of equation (5.6)
(which yields an ordinary differential equation for G(ζ)) and the solution is an ellipsoid.
This solution (5.6) shows that the intermediate hills between the clusters decrease with
time as follows:

nk(t) ∝ 1

t
. (5.7)

One of the aims of the experiments discussed in section 6.3 will be to check the validity of
this flux model prediction.

The clusters keep on growing larger at the expense of the intermediate dilute compart-
ments and when the clusters have fully developed, the system enters the second regime of
coarsening: the slow cluster-to-cluster dynamics. In this regime the clusters collapse one
after the other, at increasing time intervals, until the final (stable) state is reached, the
single cluster state.
During the slow cluster-to-cluster dynamics the profile between the clusters is no longer
hill-shaped as in Fig. 5.6a), but is monotonously increasing (see Fig. 5.6b) and Fig. 5.7)
from the higher cluster to the lower one. The flux F (nk) grows along the profile, in such
a way that the net flux F (nk+1) − F (nk) from compartment to compartment is constant.
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5.2 Coarsening Dynamics: Flux Model Predictions

Figure 5.7: In order to describe the slow cluster-to-cluster dynamics a certain distance
d apart, the indexing is switched: from k denoting the compartments, to i denoting the
clusters. The heights of the clusters with respect to the intermediate compartments is in
reality much higher.

Thus, the balance equation (5.4) for compartment nk can be rewritten as follows:

dnk

dt
= {F (nk+1)− F (nk)}+ {F (nk−1)− F (nk)}

=
1

dk,k+Mright

{F (nk+Mright
)− F (nk)}+

1

dk,k−Mleft

{F (nk−Mleft
)− F (nk)},(5.8)

where dk,k+Mright
is the distance (measured in compartments) between the clusters at k and

k+Mright, and dk,k−Mleft is the analogous distance to the cluster on the left. Switching now
from the index k (which denotes the compartments) to the index i (denoting the successive
clusters), as in Fig. 5.7, this equation takes the form:

dni

dt
=

F (ni+1)− F (ni)

di,i+1

+
F (ni−1)− F (ni)

di−1,i

. (5.9)

The cluster-to-cluster equation (5.9) for a situation with two cluster A and B becomes

dnA

dt
=

F (nB)− F (nA)

dA,B

, nB ≈ 1− nA. (5.10)

From this the following relation for the breakdown time of the smaller cluster (which is
assumed to be B in this case) can readily be extracted:

tbreakdown = dA,B

∫ 1−ε

nA(0)

dnA

F (1− nA)− F (nA)
= dA,B t0, (5.11)

where t0 is the breakdown time for two clusters situated next to each other, i.e. dA,B = 1.
From equation (5.11) it can be concluded that for a one dimensional array of N com-
partments containing two clusters, equation (5.11) predicts the breakdown time to be
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5.2 Coarsening Dynamics: Flux Model Predictions

proportional to the distance dA,B. This prediction will be checked in the experiments with
the ring setup.
In the ring setup it must be taken into account that the interaction between the two clus-
ters can act via two paths: a short path with distance d, but also a long path with distance
12 − d (for d ≤ 6). The breakdown time is then found as follows, analogously to the
substitution resistance of two resistors connected parallel:

1

td
=

1

dt0
+

1

(12− d)t0
⇔ tbreakdown = t0d(1− d

12
). (5.12)

Equation (5.12) is the prediction of the flux model for two clusters situated in the ring
setup with N = 12 compartments, the validity of which will be checked in the experiments
of section 6.4.
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Chapter 6

Coarsening: Experiment vs. Theory

6.1 Experimental Setup

In chapter 5 the main part of the setup, the ring setup with 12 compartments, has been
mentioned briefly and a sketch of the experimental setup is shown in Fig. 6.1. The ring
setup with 12 compartments is constructed with an aluminium inner cylinder and the outer
wall is made out of glass. The compartments are separated by aluminium walls with 5mm
slits at a height of h = 29mm. These slits prohibit the beads to jump more than one
compartment in order to compare the experimental results with the simulation results.
See appendix B for more properties of the ring setup and a sketch of one compartment.
The ring setup is mounted on the shaker, equipped with an accelerometer. As in the Gran-

Figure 6.1: a) Sketch of the setup used for the Granular Coarsening experiments with the
b) ring setup consisting of N = 12 compartments. c) Top view of the ring setup.
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6.2 Data Processing

ular Leidenfrost effect experiments this accelerometer maintains the right shaking strength
in combination with the wavegenerator/-controller, see section 2.2 on page 7.
A circular fluorescent lamp was placed around the cylinder and used for the illumination
of the lower part of the compartments. This light source had only one disadvantage: three
compartments are less illuminated due to the gap at the start and end of the circular light
bulb. This problem could not be solved experimentally, but during the data analysis this
effect is taken into account.
To record the experiments a Digital Video (DV) camera was used and it was situated
straight above the setup on a large tripod. The camera was focussed by hand at a height a
little bit above the beads in a cluster. When the beads are in focus, white spots of the lamp
are recorded and they are hard to analyze correctly. Those spots are not recorded when
the beads are a little out of focus. The DV-camera was linked to a television to align the
camera position exactly above the ring setup in such a way that all 12 compartments are
of the same size. During the experiments the progress could be checked on the television
too in order to determine when an experiment was ready to be stopped.
A total number of P = 480 red glass beads of diameter d = 2.5mm are used: if more
beads are used in the setup, the stable one-cluster state will be so full of beads that the
compartment cannot hold them without spilling beads into the neighboring compartments.
So for a clear clustered state this number of beads was determined to be optimal. If con-
siderably less beads are put in the setup, statistical fluctuations become too important for
the adopted mean field description. In that case, the noise term ξk in equation (5.4) should
not be neglected.
Static electricity is a general problem in granular experiments, see section 2.3. In the gran-
ular coarsening experiments static electricity can build up due to the long shaking times
of typically 10 minutes per experiment. If many experiments are performed in a row, the
beads can be observed to stick to the glass wall. Whenever the unwanted effect of static
electricity is observed, the glass beads are taken out and the lid of the ring setup is removed
in order to let the setup ”breathe” and to neutralize the charge imbalance.
In all experiments the shaking amplitude was fixed at a = 1.0mm, so the shaking strength
was only changed by tuning the frequency f . The bifurcation point Bbif = 1, where the
uniform distribution is starting to get unstable, was determined to be located around a
frequency of f = 43Hz. From the experiment it was also determined that for a frequency
f < 25Hz, the beads are not able to jump to other compartments anymore.

6.2 Data Processing

The experiments recorded on a DV-tape can be converted without any loss of quality to
single pictures of which every 25th pictures was saved to be analyzed, corresponding to one
frame per second. Such a picture sequence is analyzed using a filter for the RGB-values
(Red Green Blue) in order to obtain all the red bead pixels. This filter works with two
thresholds, one minimal threshold for the color red and one threshold for the colors green
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6.3 Starting from a Uniform Distribution

Figure 6.2: a) An original experimental picture together with the applied masks to detect
the bottom (blue circle) and the 12 compartments (white lines). b) The corresponding
processed picture from which the red pixels are assigned to the 12 compartments. It has
been processed using the masks defined in a) and using a threshold for the RGB-value to
track most of the red bead pixels, without tracking too much of the background.

and blue, which need to be below this second threshold. By tuning these two thresholds,
most of the red bead pixels are picked out of the original experimental pictures without
picking also some background pixels. Such a pixel has a Red-value larger than the red-
threshold and a Green-Blue-value smaller than the corresponding threshold. For the three
less illuminated compartments different threshold values are applied in order to get the
same result as for the 9 uniformly illuminated compartments.
Besides filtering out the red pixels, the reflections of the beads in the glass cylinder wall cut
from the original pictures by using a mask based on the bottom. In this way the number
of pixels in a cluster is underestimated, because of the parallax the top beads near the
cylinder wall will not be counted. This restriction will not affect the final results, because
this method of counting red pixels does not provide any precise quantitative information
anyhow about the number of beads in a cluster.
The separation walls between the compartments are manually selected for each experiment,
whereafter the red pixels of every recorded frame can be counted and assigned to one of
the 12 compartments, see the typical experimental picture and its processed version in
Fig. 6.2. In this way the number of red pixels in a particular compartment follows the
clustering processes going on in the setup.

6.3 Starting from a Uniform Distribution

The first experiments were carried out starting from a uniform distribution shaken at
different frequencies, i.e. different B-values. A uniform distribution was first formed by
carefully putting 40 glass beads in each compartment, but it can also be accomplished by
vigorous shaking at f = 80Hz for a few minutes. (The B-value corresponding to f = 80Hz
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Figure 6.3: For each of the 12 compartment the number of red bead pixels is recorded
every second for an experiment starting from a uniform distribution shaken at f = 37Hz.
The arrows located at t = 50, t = 150 and t = 300 indicate the clusters present, in this
way showing the transient states for t = 50 and t = 150. Compartment number 9,10 and
11 were less illuminated.

is lower than the value for which the single cluster state is still stable). Experimentally
it has been checked that both methods of forming a uniform distribution give the same
results, so the vigorous shaking method was adopted to save time.
Immediately after processing the first test experiments, the conclusion had to be drawn
that from the resulting bead pixel plots nothing quantitative could be said about the
processes going on in the regions between the clusters. See Fig. 6.3 for a typical example
of such a pixel plot. Note in particular the difference in the number of counted red pixels
for the different compartments, in the initial uniform distribution. Therefore, these pixel
plots can not be used to check the validity of the inter-cluster relation of equation (5.7).

t [s] cluster in compartment(s)

50 3,8,11
150 7,12
300 12

From the typical pixel plot of Fig. 6.3, the successive transient states for this f = 37Hz
experiment can be determined and are shown in the table. Here experimental evidence
is found for the slow cluster-to-cluster dynamics of the second coarsening regime. In this
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Figure 6.4: Pixel plot for an experiment at f = 41, i.e. a lower B-value than in Fig. 6.3. No
transient states are observed and the system goes from a uniform distribution immediately
to the stable one-cluster state. Compartment number 9,10 and 11 were less illuminated.

experiment the clusters collapse one after the other at increasing time intervals: ∆t ≈ 100s
from 3 to 2 clusters and ∆t ≈ 150s for the system to go to the final stable state of a single
cluster. So for this B-value it is observed that two transient state had to be gone through.
In experiments with higher B-values, i.e. lower shaking strength, more transient states are
observed, and for a longer time. On the other hand, for B-values near Bbif no transient
state is observed anymore: from the uniform distribution the system directly goes to the
stable single cluster state, see Fig. 6.4.

From the experiments performed with shaking frequency ranging from f = 35− 43Hz
the pixel plots, like the ones shown in Fig. 6.3 and Fig. 6.4, are analyzed in order to get
the cluster time tcluster, for which the winning cluster is established. Fig. 6.5 demonstrates
how the cluster time is determined for a winning cluster: it is the intersection between
the constant horizontal line for an established cluster and the rising straight line when the
cluster is gathering glass beads.

Fig. 6.6 shows that the cluster time tcluster decreases approximately linearly with the
shaking frequency f . Thus, for lower shaking strength it takes longer for the winning
cluster to establish as expected, because a smaller f corresponds to a higher B-value and
the prefactor A of equation (5.1) decreases for a higher B-value. Fewer beads are jumping
from compartment to compartment and therefore it takes longer for the winning cluster to
establish.
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Figure 6.5: The cluster time tcluster is determined by the intersection of the rising straight
line and the horizontal line of the winning cluster.
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Figure 6.6: The cluster time tcluster is determined for experiments at various frequencies f
(blue plus signs). For every set of experiments at a fixed frequency, the average cluster time
was determined (red diamonds). The linear fit indicates that the cluster time decreases
roughly linearly with the shaking frequency.

From this cluster time plot it can also be observed that for lower shaking frequencies the
results found for the cluster time are considerably more fluctuating than for higher fre-
quencies. A plausible explanation is that for lower shaking strengths just a few beads are
jumping from compartment to compartment. Therefore, the system is more sensitive to
the initial distribution than for higher shaking strength. In experiments for low shaking
frequencies it has been observed that when the initial distribution is not perfectly uniform,
the surviving cluster emerges quickly. So, in general it is important for these experiments
to provide an initial distribution, which is as close to uniform as possible. For experiments
at a relatively low shaking strength, it is even of more importance to provide a perfectly
uniform distribution in order to get reliable results.
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6.4 Competition between Two Clusters

6.4 Competition between Two Clusters

The second kind of experiments started with two competing clusters a certain distance d
apart, where d is defined as the shorter path in the ring setup. As mentioned in section 5.2,
the two-cluster state is an unstable equilibrium, so only one will survive and the time it
takes before one of them breaks down tbreakdown is described by equation (5.12).
In order to check relation (5.12), two clusters are put in the ring setup with the intermedi-
ate 10 compartments completely empty. Both clusters were not of the same size, but one
was filled with P = 280 red beads and the other one with the remaining P = 200 glass
beads. Thus, the winning cluster is known (the statistical fluctuations are well below this
difference) and the process of one cluster surviving the other is much faster. The absolute
winning time will be changed of course, but it only influences t0 (see equation (5.12) in
section 5.2) and therefore the prediction for the breakdown times remains the same.
All experiments have been performed using the same frequency of f = 41Hz and fixed
amplitude a = 1.0mm. The pixel plot of Fig. 6.7 is a good example of how the cluster
containing 200 beads suddenly breaks down. The breakdown time is determined roughly
the same as the cluster time as indicated in Fig. 6.7. It is determined from the intersection
of the falling line and the horizontal straight line of an almost empty compartment, in the
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Figure 6.7: Pixel plot of an experiment with initially two clusters (in compartment 4 and
6) a distance d = 2 apart. The breakdown time of the P = 200 cluster in compartment 4
is determined to be tbreakdown = 292s.
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Figure 6.8: Starting with two clusters (P = 200 and P = 280 glass beads) a number of
compartments d apart, the smaller cluster will break down in tbreakdown. The breakdown
time as a function of the distance d (blue plus signs) is averaged for every d-value (red
diamonds). The solid, blue line shows the prediction of equation (5.12) fitted for d = 1, 2, 3
(corresponding to t0 = 79s).

same spirit as in Fig. 6.5. The breakdown times determined for the experiments starting
with two clusters at various distances apart are plotted in Fig. 6.8. Fig. 6.8 shows the
experimental results for the breakdown time for two clusters in the ring setup at various
distances apart. The prediction of (5.12) seems to be valid for small d; accordingly, the
prediction depicted in Fig. 6.8 as a solid blue line is based on the experimental breakdown
times for d = 1, 2, 3 (corresponding to t0 = 79s). This prediction clearly does not hold for
the results for d > 3.
A word of caution is necessary: The two-cluster results shown here have to be treated very
carefully, because three additional experiments for various d were carried out two months
after the ones depicted in Fig. 6.8 and the corresponding breakdown times were a factor
2 to 3 higher. The reason for this difference is not clear yet. The different, drier weather
conditions may have affected the results via more static electricity, causing the beads to
stick to the wall. Besides, these last experiments were performed with new red glass beads
and this can also affect the breakdown time. Because of the apparent sensitivity to the
precise experimental conditions, more experiments with red glass beads are needed to in-
vestigate the validity of the breakdown time equation (5.12). The experiments may have
to be performed with metal beads as well, because these beads will build up less static
electricity than glass beads.
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6.5 Coarsening or Sudden Collapse?

According to the proposed relation (5.12), the breakdown time would monotonously in-
crease with the distance d between the clusters. Experimental proof of a monotonously
increasing relation for the breakdown time has clearly been provided for d ≤ 3 in Fig. 6.8.
For d > 3, however, the breakdown time is stabilizing around a certain value, which is
an indication of a lack of interaction between the clusters. The same saturation effect has
been found before in Molecular Dynamics simulations (in a linear array of compartments)
by Van Bilsen [24]. Here we propose an explanation for this saturation in terms of the
sudden collapse effect mentioned earlier in section 5.2.
The saturation value may in fact be the collapse time for a single P = 200 cluster, i.e.
for the smaller cluster independent of the larger one. In this picture, the sudden collapse
for d ≥ 4 occurs before the ”transport band” between the clusters has been built up, see
Fig. 5.7. This is possible due to the fact that these experiments started with two isolated
clusters, with no beads in the intermediate compartments, which is different from a tran-
sient two-cluster state emerging from a uniform initial distribution.
In the performed experiments the development of the transport bands may well take more
time than the collapse time of the smaller cluster. Effectively, the ring setup then contains
two independent systems with P1 = 200 and P2 = 280 beads, respectively. For the smaller
cluster this implies that the effective B-value is much smaller than the B-value for the total
system, because B ∝ P 2, see equation (5.3). With Pcluster/Ptotal = 200/480, the effective
B-value is only 0.17 of the B-value of the total system. This effective value can easily be
situated below the critical B-value required for the sudden collapse (B = 0.08 for N = 12
compartments), as shown in Fig. 6.9.

From a series of 7 experiments starting with only a single P = 200 bead cluster, the
average collapse time was determined to be tcollapse = 438s. This is roughly 100 seconds
above the saturation value of Fig. 6.8. The discrepancy can be attributed to the different
conditions in the collapse experiments as compared to the experiments of Fig. 6.8. As
mentioned already at the end of the previous section 6.4, it would be worthwhile to redo
the experiments under more carefully controlled conditions, preferably with metal beads.
This will clarify whether the saturation is indeed a sudden collapse phenomenon.
Apart from experiments, it is advisable to check the proposed explanation for the saturation
also by means of Molecular Dynamics simulations.
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Figure 6.9: Bifurcation diagram for N = 12 compartments with dash-dotted lines drawn
for the B-values corresponding to P = 480 and P = 200 glass beads. The saturation shown
in Fig. 6.8 may be explained by the sudden collapse of the smaller (independent) P = 200
cluster, indicated here by the B(P = 200)-value, which lies below the critical B-value of
B = 0.08 for N = 12 compartments.
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Appendix A

Equipment

• Shaker: Brel & Kjær (Denmark), Type: Exciter Body Type4802

• Gen Purpose Head Type 4817: current limit=43 amperes rms, displacement limit=0.75
inches=19 mm, head constant=1.20 inches/volt sec, bolt torque limit: 50 inch lbs=0.57
kgm

• Power Amplifier: Brel & Kjær (Denmark), Type: 2708

• Wavegenerator/-controller: Brel & Kjær (Denmark), Type: Vibration Exciter Con-
trol Type 1050

• High-speed camera: Kodak Ektapro Model 2000, max. framerate=2000 fps
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Appendix B

Ring Setup

Figure B.1: A sketch with dimensions of a compartment of the N = 12 compartment
ring setup: Surface area of 1 compartment: Ω = 241mm2, Surface of slit: 85mm2, Outer
cylinder diameter: 104mm and Inner cylinder diameter: 80mm.
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